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Important water resources in California’s agricultural and urban landscapes are at risk without more efficient
management strategies. Improved monitoring can increase the efficiency of water use and mitigate these
potential risks. The California Irrigation Management Information System (CIMIS) programme helps farm-
ers, turf managers, and other resource managers develop water budgets that improve irrigation scheduling
and monitor water stress. The CIMIS system is a repository of meteorological data collected at over 130
computerised weather stations. These are located at key agricultural and municipal sites throughout Cal-
ifornia and provide comprehensive, timely, weather data collected hourly and daily. In this article, the
CIMIS sensor system is combined with hourly NOAA Geostationary Operational Environmental Satel-
lite (GOES) visible satellite data to develop a methodology to extend reference evapotranspiration (ET0)

station estimations to spatial daily ET0 maps of California. The maps are calculated on a (2 km)2 grid, a
high spatial resolution compared with the density of CIMIS stations. The hourly GOES satellite images
are used to estimate cloud cover, which are used in turn to modify clear sky radiation estimates. These are
combined with interpolated CIMIS weather station meteorological data to satisfy the Penman–Monteith
ET0 equation.

Keywords: evapotranspiration; satellite imaging; remote sensing; sensor systems

1. Introduction

California experiences periodic water shortages from natural climate variability and is at risk for
extended droughts due to changing climate patterns. California agriculture, a $32 billion/year
economic sector, requires efficient water management. In California, water conservation is no
longer seen as a short-term fix during drought conditions but instead as an on-going practice to
be incorporated in the planning process. Water conservation also provides cost savings, improves
water quality, contributes to a safe and clean environment, and increases yield. Technologies exist
to provide proper water delivery in agricultural, residential, commercial, industrial, and institu-
tional settings. The problem lies in the determination of the right amount of water for various
purposes (Temesgen and Frame 2005). Knowledge of these requirements can address a variety
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2 Q.J. Hart et al.

of water issues such as irrigation scheduling and design, landscape planning, and water transfer.
Evapotranspiration is a measurement of the water requirements for the healthy functioning of a
particular plant–soil–atmosphere system. The reference evapotranspiration (ET0) is an evapotran-
spiration estimate for a standardised grass crop, requiring only meteorological data to calculate.
It can then be used to estimate ET of other plants and surfaces.

The California Irrigation Management Information System (CIMIS) programme was intro-
duced by the California Department of Water Resource and the University of California, Davis, in
1982. The primary objective of CIMIS is to provide ET0 data to California’s agricultural growers
to influence irrigation scheduling. Although agricultural growers represent the largest user group,
the user base has been expanding to include fire fighters, engineers, researchers, educators, land-
scapers, consultants, meteorologists, lawyers, air quality controllers, and pest managers, among
others (Temesgan 2003). CIMIS manages standardised meteorological stations to provide input
for the ET0 calculations. There are over 130 computerised weather stations located at key agricul-
tural and municipal sites throughout California, which provide comprehensive, timely, weather
data. The stations continuously collect data 24 hours a day. Local data loggers for each station
interrogate the sensors every minute and average 60 consecutive readings for hourly measure-
ments. This hourly data and corresponding daily averages or totals are temporarily stored in the
data logger until a centralised facility at the Department of Water Resources (DWR) headquarters
retrieves the data for final storage in the CIMIS database. New acquisition software will allow
more frequent polling, and CIMIS plans to provide hourly station information. Public access to
current and historical data is provided through a web-enabled interface.

CIMIS currently provides ET0 estimates at specific weather station sites. However, ET is
spatially variable, due to a complex interaction between topographical features and the nature
of climate itself (Mardikis et al. 2005). ET0 is particularly influenced by solar radiation, which
is itself influenced by cloud cover, which cannot be interpolated over large distances from point
measurements (Perez et al. 1997). Even though point estimates are useful for water managers,
these measures still lack the spatial information needed to allow confident decision-making. On
average, an arbitrary location in California is about 45 km away from a CIMIS station, a distance
potentially beyond the range for CIMIS stations to provide representative measurements. To
address the problem of spatial data gaps, other sensor platforms that do excel in monitoring cloud
cover and solar radiation are utilised. The National Oceanic and Atmospheric Administration
(NOAA) Geostationary Operational Environmental Satellite (GOES) satellites have been used
to predict incoming solar radiation using various methodologies for decades (Hay 1993, Noia
et al. 1993a,b). Noia, for example, divides the techniques into physically and statistically based
methods. One of the first and most well-known physical techniques, from Gautier and Diak
(1980) and Diak and Gautier (1983), correlates GOES counts to insolation with a three-layer
atmospheric model. Using GOES data, cloud cover can be spatially modelled at hourly time or
finer increments.

This paper builds on the CIMIS meteorological database by using a methodology that extends
the weather station predictions to spatial daily ET0 maps of California. Because of the spatial
variability of the weather variables needed to compute ET0, as well as the different physical
reasons accounting for that variability for each parameter, a direct interpolation of ET0 was not
implemented. Instead, data from the GOES satellite sensor were used to create hourly maps of
cloud cover or equivalently, a clear sky factor (K) over California. These K estimations were
combined with clear sky solar radiation (Rso) predictions modelled with the map grid location
and elevation as well as the turbidity of the atmosphere to calculate solar radiation (Rs). Satellite
derived K factors were also used in the calculation of net long-wave radiation (Rnl), where cloud
cover affects the net long-wave radiation exchange between the surface and the atmosphere.

The hourly radiance maps were totalled for the daylight hours and these daily radiance val-
ues were combined with weather parameters relating to temperature, wind speed, and humidity,
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Civil Engineering and Environmental Systems 3

Figure 1. ET0 estimations. The scale is in mm/day with isolines on the 0.5 mm/day. (a)Average July ET0 (b) 2005-07-31
(c) 2007-07-01.

interpolated from the CIMIS weather station sensor data. This combination determines daily ET0

based on a standard,American Society of Civil Engineers (ASCE), formulation from the Penman–
Monteith equation (Allen et al. 2005). The maps are calculated on a (2 km)2 grid, a high spatial
resolution compared with the density of CIMIS stations. Implementation details and method-
ologies used were influenced in part by the need to have a robust operational system in place,
allowing for ET0 estimations in the presence of missing satellite data, or individual weather station
malfunctions. The implementation was developed using existing or newly created modules in the
Geographic Resources Analysis Support System (GRASS) (Neteler and Mitasova 2004, GRASS
Development Team 2006) open-source Geographic Information System (GIS) application. Data
have been acquired and ET0 estimated daily since February 2003. This allows for recent histor-
ical data to be used for planning purposes, while daily estimations can inform water managers
on variations of these historical averages. As an example of the distribution of ET0 in California,
Figure 1 shows some ET0 maps of California for July, typically the month with the highest ET0

values. Figure 1a shows the monthly average ET0. Daily variations in ET0, due to changes in
the weather parameters, are averaged out, showing relatively smooth regions of constant ET0.
Figures 1b and c show a range of daily variation, where cloud cover or extremes in temperature,
humidity, or wind speed can have large and spatially varying effects.

2. ET0 parameter calculation

Evapotranspiration is the combination of evaporation and transpiration processes. Evaporation is
free loss of water from soil and plant surfaces to the atmosphere, whereas transpiration represents
the plant mediated transfer of water, mainly through the stomata, to the atmosphere. Evapotranspi-
ration is controlled by physical factors, such as meteorological variables, soil characteristics, and
the physiological characteristics of the vegetation such as plant type and biomass. By specifying
standard crop parameters with a well-irrigated system, a standard ET0 can be determined that
requires only meteorological measurements. A standardised ET0 separates atmospheric drivers
on ET from crop specifics and reduces the need to develop more complex models for specific crop
types and growth stages. Generally, field-specific evapotranspiration parameters are developed as
linear relationships to ET0.

The ASCE Evapotranspiration in Irrigation and Hydrology Committee (ASCE-ET) defines
one standardised reference evapotranspiration equation and two reference surfaces (Walter et al.
2000, Allen et al. 2005). This paper uses the short crop surface as the reference for ET0, which
represents the hypothetical ET from an extensive grass surface of uniform height and actively
growing with adequate water. The equation describes the control that environmental factors, such
as solar radiation, wind speed, air temperature, and humidity, exert on ET0. These factors influence
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4 Q.J. Hart et al.

ET either by providing the energy for vaporisation or by increasing efficiency in the removal of
water vapour from the surface. The following equations, from theASCE-ET formulation, describe
the parameters in the calculation of ET0:

ET0 = 0.408�(Rn − G) + γ Cn
Tm+273U2(es − ea)

� + γ (1 + CdU2)
(1)

Rn = Rns − Rnl (2)

Rns = (1 − α)Rs (3)

Rs = KRso (4)

Rnl = (1.35K − 0.35)(0.34 − 0.14
√

ea)σ
(Tn + 273.15)4 + (Tx + 273.15)4

2
(5)

ea = 0.6108 exp

(
17.27Tdewp

Tdewp + 237.3

)
(6)

es = 0.6108

2

(
exp

(
17.27Tn

Tn + 237.3

)
+ exp

(
17.27Tx

Tx + 237.3

))
(7)

� =
4098.17(0.6108) exp

(
17.27Tm

Tm+237.3

)
(Tm + 237.3)2

(8)

γ = 0.000665P (9)

P = 101.3

(
293 − 0.0065z

293

)5.26

(10)

Tm = Tn + Tx

2
(11)

Cn = 900 and Cd = 0.34 (12)

Rn − G represents the supply of radiative energy available to vaporise water. For daily calcu-
lations, net radiation, Rn, is dominant and soil heat flux density, G, is assumed to be negligible.
Rn is calculated as the difference between the incoming net short-wave radiation, Rns, and the
outgoing net long-wave radiation, Rnl, (Equation (2)). Rns represents the portion of Rs that is not
reflected, with the reference crop albedo, α = 0.23 (Equation (3)). Rs is the amount of incoming
solar radiation that reaches the earth surface after accounting for the effects of absorption, scatter-
ing, and reflection of the atmosphere. Rs is modelled as a fraction of Rso, using a clear sky factor
(K). K is directly related to the cloud cover and is determined from GOES satellite data. Various
models can be used to calculate Rso. The model here uses the clear sky model developed for
the European Solar Radiation Atlas (ESRA) and the Heliosat programme (Rigollier et al. 2000).
In addition to the surface location, the model includes atmospheric attenuation with a turbidity
factor, taken from a global atlas. The calculation of ET0 assumes a standard flat surface when
determining Rs. The high relief in California implies that many regions have trends with different
slopes and aspects. Some regions utilising these ET0 estimates may require a correction based on
the local slope and aspect. Tian, for example, provides a method to estimate solar radiation for an
arbitrary slope and aspect, given solar radiation from a nearby flat terrain (Tian et al. 2001). Net
long-wave radiation, Rnl, represents the exchange of radiation between the crop surface and the
atmosphere and clouds (Equation (5)).

Average wind speed at 2 m U2 is used to calculate the aerodynamic resistance, which represents
a resistance to diffusion that air above the vegetative surface imposes on ET. The water content
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Civil Engineering and Environmental Systems 5

of the air is represented by (es − ea) expressing the vapour pressure deficit. Saturation vapour
pressure, es (Equation (7)) describes the daily mean vapour pressure of saturated air. The actual
vapour pressure, ea is calculated as a function of dew point temperature (Equation (6)). The slope
of the vapour pressure–temperature curve is � (Equation (8)), P represents atmospheric pressure,
and γ is the psychrometric constant. Tm represents the mean air temperature (Equation (11)). Cn

and Cd are coefficients related to the reference crop used in the equation.
Calculating ET0 requires meteorological data including air temperature, incoming solar radi-

ation, average daily wind speed and dew point temperature. The CIMIS programme deploys a
standardised weather station to measure these parameters. Table 1 lists the sensors deployed at
the station. In addition, because ET0 is defined over a reference surface, the stations themselves
are located in a standard environment. This includes maintaining a well-watered irrigated short
grass surface surrounding each station.

To develop maps for ET0, the above parameters need to be calculated for every location in
a gridded surface of California. Rather than using station data, solar radiation is derived from
models coupled with GOES satellite imagery for a clear sky estimation. Temperatures, wind
speed, and dew point are derived by interpolating point data from the network of CIMIS weather
stations. Figure 2 shows an overview of all steps for calculating statewide ET0 maps. In general,

Table 1. CIMIS weather station sensors.

Sensor Model Sensitivity

Total solar radiation (pyranometer) Li-Cor LI200S ±5%
Air temperature Fenwal UUT5J1 (HMP35) ±0.1◦C
Relative humidity Vaisala Humicap (HMP35) ±2– 4% RH
Wind vane Met-One 024A ±5%
Anemometer Met-One 014A ±1.5%
Precipitation TI TE525M ±1% at 5 cm/h

Figure 2. Processing steps for generating ET0. The left side shows the integration of hourly GOES imagery to estimate
radiation parameters. The right side shows weather station interpolations.
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6 Q.J. Hart et al.

the left-hand side describes the process for determining the solar radiance and the right-hand side
shows the interpolation of the weather station parameters.

The right-hand side shows four separate parameters that are interpolated from the CIMIS
weather station sensors, Tn, Tx, Tdewp, and U2.All interpolation methods take into account elevation
differences in the stations as well. Three different methods of interpolation are used. The methods
include a 3-D Regularised Spline with Tension for U2, and two separate methods, Truncated
Gaussian (TG) and 2-D Regularised Spline with Tension (RST) with an elevation correction,
for temperatures. To determine the amount of clear sky contained at each grid location, GOES
visible radiance is compared with both the expected clear sky surface radiance and the expected
radiance of a fully developed cloud to determine, K . This is combined with the modelled clear sky
radiance. These values are calculated hourly from sunrise until sunset for every day. Rs predictions
for each hour are integrated into a daily Rs value. This is compared with the modelled daily Rso

to determine an average daily K value. The individual maps are combined to determine Rnl, Rs,
and finally, ET0. All sensor data processing including the satellite and weather station data are
performed using existing or created modules in the GRASS application.

2.1. Ground station data interpolation

The daily maximum air temperature at 1.5 m (Tx), daily minimum air temperature at 1.5 m (Tn),
dew point temperature at 1.5 m (Tdewp), and wind speed at 2 m (U2) parameters are derived by
spatially interpolating point data from the CIMIS network. Spatial interpolation generates surfaces
of continuous fields from data collected at discrete locations. A number of different interpolation
methods applicable to climatic variables exist, ranging from the most simple (e.g., inverse distance
weighting) to more sophisticated ones (e.g., pattern recognition using neural networks). Several
authors indicate that simple methods can be used to interpolate climatic variables from a dense
and evenly distributed measurement set (Philips and Marks 1996, Antonió et al. 2001, Mardikis
et al. 2005). However, when generating surface climatic data over California using CIMIS data,
it is necessary to interpolate over large regions of complex terrain with sparse and unevenly
distributed weather stations. The weather stations are spatially distributed as shown in Figure 3.
Areas such as California’s central valley have a dense distribution of stations, but mountainous,
urban, and desert regions are less well represented. This distribution results from the CIMIS

Figure 3. CIMIS weather stations. (a) Station locations, with larger symbols for higher elevations. (b) Histograms of
elevations for California versus CIMIS stations.
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Civil Engineering and Environmental Systems 7

focus on California’s agricultural practices. For various reasons, not all stations report data daily;
on average, it is possible to use data from about 120 stations for the interpolations. Figure 3a
groups stations by elevation with higher stations having larger symbols. Figure 3a also identifies
three regions used to validate temperature changes with elevation. CIMIS stations are also not
representative of California in their distribution by elevation. Figure 3b shows the difference in
the distribution and range of the elevation, comparing the CIMIS stations and California as a
whole. The station elevations under-represent the higher elevations in California.

Several authors have suggested that the incorporation of elevation can improve interpolation
results in cases where topography is an important factor to determine climatic variability (Daly
et al. 1994, Hutchinson 1995, Thornton et al. 1997, Price et al. 2000). We selected the RST and
TG interpolation methods for our parameter estimations, both of which can take into account
elevation influences.

The TG method developed by Thornton et al. (1997) has been used to generate daily surfaces of
temperature, precipitation, and other variables over large regions of complex terrain. The method
applies the spatial convolution of a truncated Gaussian filter with a set of observations. The
weight Wt,α(r) given to an observation with a radial distance r from the centre of the filter, i.e.,
the estimation point, is given by Wt,α(r) = exp(−(r/t)2α) − exp(−α) for r ≤ t and 0 for r > t .
Parameter t determines the truncation distance and parameter α adjusts the shape of the filter.
The method is applied as follows. Let {(vi, pi)} be a set of N observations of a variable V , where
vi and pi are the observed value and the location of the corresponding station, respectively. The
value of the variable v(p) at a point p is estimated by first centreing the filter Wt (p),α(p) at p,
where t (p) and α(p) are the corresponding filter parameters at p. The interpolated value is given
by (v)p = ∑

iwivi
/
∑

iwi
, where wi = Wt(p)α(p)(dist(p, pi)).

Terrain elevation is incorporated in the TG method by using a linear regression based correction
for the estimated values. The regression is not between values and elevations directly, but on
corresponding differences, i.e., between (vi − vj ) and (ei − ej ), where (i, j) are all unique pairs
of stations over the entire area and ei is the elevation of station i. Letting a and b denote the obtained
regression coefficients, the estimated v(p) is corrected by incrementing

∑
i[a + b × (e(p) − ei)]

to the basic TG estimation above, where e(p) is the elevation at p.
On a daily basis, the truncation and shape parameters are determined by searching the param-

eter space and selecting the values that minimise the root mean squared error (RMSE) using a
standard leave-one-out cross-validation methodology. In this process, the truncation radius t (p) is
initialised to include at least one station from p and then refined via an iterative algorithm such that
it is decreased for regions with high observation density and increased otherwise. Although the
TG method is applied as an inverse-distance algorithm, the Gaussian function does not force the
resultant surface to pass through the observations, thus allowing for smoother surfaces. Figure 4a

Figure 4. Example of temperature interpolation comparing the RST and TG methods for 1 day, 18 June 2005. (a) The
TG method, (b) The 2-D RST on the normalised values, and (c) the final, elevation corrected prediction.
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8 Q.J. Hart et al.

shows an example temperature calculation for the TG method. (Mitasova et al. 1995, Neteler and
Mitasova 2004).

RST is a method that simulates passing a flexible plate close to the known data points while
minimising the energy to bend the plate. Two parameters determine the outcome of the inter-
polation. The tension parameter tunes the plate from stiff to flexible. Low tension (stiff) plates
are smoother, but can miss high gradient changes. High-tension (flexible) plates are less smooth
and allow higher gradient changes about individual points. Tension also controls the influence of
neighboring points. Lower tension gives points influence over longer distances. The smoothing
parameter controls how much the fitted surface can deviate from the measured point values. Since
the spatial interpolation assigns one value for each (2 km)2 pixel, variation of the RST from the
measured points is allowed. Both 2-D and 3-D splines with elevation were used. 2-D RST interpo-
lations along with an elevation normalisation were made for temperature estimations. Wind speed
estimations used 3-D splines. Parameter values were selected through cross-validation exercises
in conjunction with visual inspection and are constant for all estimates.

The RST interpolation uses a simple elevation dependence to normalise the temperatures from
all stations to a standard elevation. The measurements were normalised to sea level using a
temperature change rate of 5◦C/km. A 2-D spline interpolation was fit to the normalised data.
The parameters to the RST were chosen with low tension and high smoothness resulting in a
smooth interpolation over the normalised data. The resulting values were then re-corrected with
elevation data for California. Figures 4b and 4c shows an example for temperatures calculated
using this method.

A rate of 5◦C/km was chosen for all temperature interpolations, Tx, Tn, and Tdewp. In practice,
a consistent elevation dependence of temperature is difficult to show in California. The environ-
mental lapse rate for the normal change in temperature in a vertical profile of air is usually cited
as about 6.5◦C/km, but this differs from change along a surface with changing elevation. The
elevation dependence was determined from yearly averages determined from three areas in the
State, labelled in Figure 3a as Sacramento, South Valley, and South Coast. The temperature versus
elevation dependence was calculated for all pairs of stations within each region every day over a
3 year period.

As described above, the CIMIS stations do not represent the elevations in California and cannot
readily be used to evaluate the two implementations in regions with large elevation differences.
The TG method’s best fit method can result in large variations in the elevation dependence from
day to day, whereas the RST method has a constant dependence on elevation. As neither can be
shown to behave definitively better in these high elevation areas, and they depend on somewhat
different aspects of the CIMIS station data, the final temperature estimates were generated by
averaging the results of TG and RST interpolations.

Despite their differences, both temperature estimations assume a constant elevation dependence
throughout the state.An examination of measured temperature change rates between close stations
showed rates for California vary widely. While the average change is about 5◦C/km for each
measurement, the rates show spatial and seasonal variations. Table 2 shows the temperature
change rates for the three regions shown in Figure 3 averaged at monthly intervals. Although
it is fairly easy to explain the aspects of these results — for example, the diminishing effect of
maritime influences in the South Coast region causing an inversion of the rate moving inland with
higher elevations — it is clear that simple interpolations over a complex landscape can be only
partially successful. Only Tdewp shows any statewide stability. These trends are somewhat picked
up by the 2-D RST, as shown in Figure 4.

Finally, average daily wind speed measured at 2 m height above the surface is used to compute
the aerodynamic resistance, which represents a resistance to diffusion that air above the vegetative
surface imposes on ET. Average wind speed maps were generated using 3-D RST. Figure 5 shows
some example wind speed interpolations. For these estimates, more flexible surfaces were fit.
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Civil Engineering and Environmental Systems 9

Table 2. Average monthly surface temperature change with elevation measurements ◦C/km for various
California regions.

South Coast South Valley Sacramento

Tx Tn Tdewp Tx Tn Tdewp Tx Tn Tdewp

Jan −3.34 −3.81 −9.44 3.25 −7.29 −7.66 0.20 −1.93 −4.93
Feb −3.13 −3.68 −10.22 −3.93 −7.50 −6.48 −4.50 −2.29 −5.62
Mar 0.46 −3.94 −7.58 −4.73 −10.39 −6.14 −5.54 −2.49 −5.49
Apr −0.46 −3.97 −6.42 −4.67 −10.18 −5.59 −6.50 −2.84 −3.83
May 4.15 −3.09 −6.52 −3.79 −10.69 −5.65 −6.48 −2.43 −3.58
Jun 6.63 −5.31 −3.76 −3.63 −12.83 −5.09 −5.47 −1.27 −3.33
Jul 10.36 −2.38 −4.63 −2.91 −13.02 −6.46 −3.53 2.67 −4.94
Aug 9.99 −2.02 −6.04 −3.23 −12.51 −5.45 −3.09 2.38 −6.50
Sep 6.22 −0.80 −7.30 −3.17 −11.39 −5.39 −4.08 0.81 −6.97
Oct 1.56 −1.68 −5.74 −3.53 −8.34 −6.69 −4.68 −0.33 −5.27
Nov −2.20 −3.64 −9.45 −0.94 −6.87 −8.38 −2.64 −0.55 −4.56
Dec −3.05 −3.23 −11.06 1.62 −5.71 −8.43 −2.33 −1.74 −4.28

Figure 5. Two typical wind speed interpolations, for a calm 5 and a windy day. (a) 2005/12/21 calm (b) 2005/06/18
windy.

High winds reported from single stations cause anomalous effects in the interpolation around
those points.

2.2. Radiation models

Radiative inputs to the ASCE-ET equation include the energy terms; Rs and Rnl. Solar radiation
can be measured directly for individual point locations or it can be modelled. Upward long-
wave radiation is primarily a function of surface temperature and downward radiated long-wave
radiation is affected by the cloud cover and water vapour.

2.2.1. Solar radiation, Rs

Solar radiation is a linear term in the ET0 equation and is the driving factor in the ET0 calculation
for much of California. It is important to measure this parameter accurately. CIMIS stations mea-
sure solar radiation directly, but this parameter cannot be reliably interpolated spatially over large
distances since it is dependent on the cloud cover, which is difficult to interpolate from station
data points (Perez et al. 1997). GOES satellites, arguably the most important instruments in the
meteorological programme of the United States, are part of a programme that has been contin-
uously active for more than 30 years. Its geostationary orbit, essentially remaining motionless
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10 Q.J. Hart et al.

above a point on the equator with respect to the Earth, allows for rapid imager revisits. The high
temporal resolution allows GOES to monitor cloud variability and makes it especially well suited
for solar radiation modelling.

The method for the calculation of Rs described here combines model predictions of clear sky
radiation with hourly estimates of cloud cover using GOES visible channel imager data. This
method for estimating solar radiation is independent of measurements at the CIMIS stations. The
clear sky solar radiation model used is part of the Heliosat-II programme (Rigollier et al. 2000,
2001, Leferve et al. 2002). The cloud cover estimates based on the GOES visible channel are
based on ratio techniques described by Ellis and Vonder Haar (1976). These methods were chosen
as methods that provided small errors and were well suited for daily processing over the relatively
small area of California.

For each location in California, the sunrise and sunset times are calculated daily. Within the
sunlit period, GOES data are available for each hour, as shown in Figure 6. The solar zenith angle
for each hour is shown with solid lines. From each of these hourly GOES images, a clear sky
factor is calculated as described in Section 2.2.2. This factor is assumed constant over the intervals
of time/sun angle shown with dotted lines. Clear sky radiation is also calculated for each of these
intervals. The clear sky radiation and clear sky factor are used to predict the actual radiation for
each interval. Finally, the contributions from all intervals are summed for the daily estimate of
solar radiation.

The radiation model uses an analytical integration over solar angles and it is simple to change
the frequency of the GOES cloud cover estimates. Missing cloud cover estimates, caused by lost
GOES images, are handled by extending the intervals adjacent to the missing times. The analytical
integration assigns appropriate weights to the remaining cloud cover estimates.

Atmospheric transmission in the model combines aspects of aerosols, relative humidity, ozone,
and molecular scattering into a single parameter, the Linke turbidity. This parameter relates the
optical depth for an arbitrary atmosphere to an equivalent atmospheric depth of a Rayleigh-only
scattering atmosphere. Along with the sun’s geometry and the elevation, the predicted radiation
is calculated with this parameter. Seasonal values of the Linke turbidity are derived from a world
database of turbidity estimates (Remund et al. 2003).

2.2.2. Clear sky factor, K , and solar radiation, Rs

The GOES imager data are used to calculate hourly estimates of cloud cover. This is a relatively
simple method which uses an empirical relation that is roughly a linear relation between a measured

Figure 6. Solar radiation calculations are performed on zenith intervals, using hourly cloud cover estimates.
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Civil Engineering and Environmental Systems 11

clearness parameter with K , following a method similar to the Heliosat-II model (Beyer et al.
1996, Leferve et al. 2002). The clearness parameter, k∗

i , at pixel i is shown in Equation (13).

k∗
i = vc − vi

vc − vgi

(13)

The clearness parameter is the measure of the amount of cloud cover present at each pixel, i.
vi is the GOES visible radiance, vgi is the expected clear sky radiance from that pixel, and vc is
the maximum expected cloud radiance. k∗

i has a value of one with no clouds, where vi equals
vgi and approaches zero with complete cloud cover as vi equals vc. The clear sky radiance, vgi ,
is calculated for each pixel by taking the minimum measured value of vi over the previous 2
weeks. This assumes that at some point in that time frame there were no clouds over that pixel.
The maximum pixel brightness vc is calculated by taking the maximum value of any pixel for
that time in the previous 14 days. To avoid single pixel anomalies, this value is taken on a 9 × 9
average of the visible image. This results in choosing bright pixels that are part of a large cloudy
region. Using these empirical methods for determining vgi and vc avoids some confounding land
surface effects. For example, differences due to changing solar view angles or seasonal changes
in the surface are accounted for with the changing albedo values.

The Heliosat-II model (Leferve et al. 2002) defined a correction to convert this parameter to a
predictive measure of the observed radiance at the surface. The clear sky factor at time i, ki , as a
function of the clearness factor, k∗

i , is shown in Equation (14).

ki =

⎧⎪⎪⎨
⎪⎪⎩

1 1.0 < k∗
i

k∗
i 0.2 < k∗

i < 1.0
5k∗2

i /3 + k∗
i /3 + 1/15 −0.1 < k∗

i < 0.2
0.05 k∗

i < −0.1

(14)

This function is a unity relation for most values of k∗
i , with a correction for low values of k∗

i . The
methods for determining vc imply that for some individual bright pixels, k∗

i can be less than zero.
Using these empirical methods for predicting vgi and vc avoids some confounding land surface
effects. For example, differences due to changing solar view angles or seasonal changes in the
surface are accounted for with the changing albedo values. With hourly estimates of the clear sky
factor,ki , and the modelled clear sky solar radiation Rsoi, the daily solar radiation is simply the
sum of hourly products, Rs = ∑

i kiRsoi. From this, a daily clear sky factor is calculated. This
parameter is used to influence energy exchange with the atmosphere in the calculation of emitted
long-wave radiation. The clear sky factor (K) is defined as K = Rs/Rso.

Figure 7 shows a comparison of the predicted and measured daily solar radiation at the CIMIS
stations, from February 2003 through April 2006. The best fit correlation is nearly one-to-one
when forcing the y-intercept through zero. Allowing the best fit, y-intercept indicates that GOES
based estimates may over-predict radiation in low light levels and under-predict radiation in very
bright conditions. This could imply that the function mapping cloud brightness to a clear sky
factor should be re-evaluated.

The spatial distribution of errors for Rs is not equal over all parts of California as shown in
Figure 7b. The error is reported as the root mean squared error between the measurements and
predictions. As can be seen, the areas along the coastline and some desert regions have the largest
errors. The majority of stations show significantly less difference between measured and predicted
Rs. Table 3 shows the variation of the regression parameters computed individually for each month.
The table shows little variation in the correspondence between measured and predicted Rs, for
the 0 y-intercept case especially. The over-prediction of Rs from the GOES measurements at low
light levels generally increases with the available clear sky radiation increases for a particular
month.
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12 Q.J. Hart et al.

Figure 7. (a) GOES estimated Rs versus CIMIS measured Rs with two linear fits, one forcing the y-intercept to be 0.
(b) Spatial distribution ofRns errors.

Table 3. Monthly variation of GOES versus CIMIS Rs linear fit.

GOES = mCIMIS + b GOES = mCIMIS

b m R2 m R2

Jan 3.9752 0.6805 0.8572 1.083 0.9642
Feb 4.4108 0.7255 0.8202 1.069 0.9732
Mar 4.9344 0.7655 0.8442 1.040 0.9871
Apr 5.297 0.787 0.8361 1.027 0.9876
May 7.1219 0.7468 0.7413 1.022 0.9888
Jun 9.063 0.690 0.6623 1.021 0.989
Jul 12.1926 0.5773 0.5343 1.037 0.9894
Aug 11.5059 0.5708 0.5587 1.049 0.9906
Sep 7.9946 0.6496 0.6317 1.042 0.9887
Oct 5.9819 0.6657 0.7703 1.060 0.9813
Nov 4.8397 0.6366 0.7716 1.083 0.9708
Dec 4.1519 0.6419 0.8271 1.105 0.9556

2.2.3. Net long-wave radiation, Rnl

The standardised ASCE method for determining net long-wave radiation (Rnl) is based on a
method developed by Brunt (1932), which uses vapour pressure near the surface to predict net
surface emissivity.

Rnl = (1.35K − 0.35)(0.34 − 0.14
√

ea)σ
(Tx + 273.16)4 + (Tn + 273.16)4

2
(15)

Most of these values are based on station measurements with the exception of K . CIMIS esti-
mates cloud cover as a ratio between the measured solar radiation and predicted clear sky radiation;
similar to the clear sky factor, K , but with a simpler clear sky radiation model that is a height
corrected fraction of the extraterrestrial radiation (Duffie and Beckman 1980, Allen et al.2005).
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Civil Engineering and Environmental Systems 13

Figure 8. GOES estimated Rnl versus CIMIS calculated Rnl.

Figure 8 shows the difference between CIMIS Rnl and Rnl using GOES estimated K factors. As in
the Rs comparison, the GOES method over-predicts Rnl in the cloudy regions and under-predicts
in the clear regions. This may be more pronounced in the Rnl comparison because of the difference
in the calculation of the cloud factor, K .

2.2.4. Winter net radiation estimation problems

Two winter phenomena in California adversely affected the net radiation predictions on cer-
tain occasions. These phenomena are snowfall and persistent fog, both common occurrences in
California. Both problems cause inaccurate estimations of surface albedo, which lead to inaccu-
rate estimations of cloud cover. These lead in turn to inaccurate estimations of net radiation. In
the case of snowfall, the method compares snowfall to the previous albedo and perceives freshly
fallen snow as cloud cover, resulting in over predicting clouds and under predicting net radiation.
In the case of persistent fog, a 14 day region of continuous fog will cause an over prediction
of albedo and will subsequently under estimate cloud cover and over predict net radiation for
cloud covered regions. A modification to the existing model could add additional GOES imager
channels to help differentiate between cloud and snow, and fog and surface.

3. Conclusions

ET0 is an important indicator in both agricultural and urban settings and can address water needs
for a variety of water issues. We have demonstrated a method of creating daily ET0 maps for

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
2
3
:
0
0
 
1
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



14 Q.J. Hart et al.

California by integrating satellite and ground station data, based on the ASCE-ET equation. Maps
are created from a combination of hourly GOES data along with interpolations from daily weather
station data. The model has been used with GOES and CIMIS data since February 2003, and it
will be incorporated in the CIMIS data delivery system, providing users easy access to spatial
distributions of ET0.

Solar radiation is a primary parameter in the ET0 calculation and comparisons of this technique
with historical CIMIS weather station measurements show generally good agreement with mea-
sured data. Although comparison of the interpolations can give some indication of the reliability
of the interpolations, it is difficult to get an accuracy estimation in areas of the state with limited
CIMIS stations. Using other weather stations is difficult because they are not standardised to the
height, and surface conditions of the CIMIS stations. Further improvements include obtaining
Linke turbidity estimations, used in calculation of Rso, from the GOES data directly, or in combi-
nation with ground station data. For example, differences in Rs between the CIMIS ground stations
and the GOES estimations could be used to determine a point-based turbidity estimation. Separa-
tion of the clear sky model and the cloud cover is a convenient simplification. Other methods exist
to determine K from the GOES data. For example, the complete Heliosat-II model (Rigollier et
al. 2001) creates more sophisticated surface models to limit the reliance on hourly ratios. Finally,
some events like snowfall and persistent fog lead to erroneous cloud cover predictions. Including
additional GOES channels can be included into the methodology to detect these events. We are
also comparing the ground station interpolation methods to weather model generated maps of the
meteorological parameters to further investigate the spatial distribution of these values.

Nomenclature

Symbol Description (units)

ET0 reference evapotranspiration (mm/day)
Rn net radiation (MJ/m2 day)
Rnl net long-wave radiation (MJ/m2 day)
Rs solar radiation (MJ/m2 day)
Rso clear sky solar radiation (MJ/m2 day)
Tn daily minimum air temperature at 1.5 m (◦C)
Tx daily maximum air temperature at 1.5 m (◦C)
Tdewp dew point temperature at 1.5 m (◦C)
U2 wind speed at 2 m (m/s)
Tm daily mean air temperature at 1.5 m (◦C)
ea actual vapor pressure (kPa)
es saturation vapor pressure (kPa)
P atmospheric pressure (kPa)
z height (m)
γ psychrometric constant (kPa/◦C)
� slope of vapor pressure-temperature curve (kPa/◦C)
K clear sky factor
vi GOES visible radiance for pixel i (W/m2 sr μm)
vgi GOES clear sky visible radiance for pixel i (W/m2 sr μm)
vci GOES maximum cloud radiance (W/m2 sr μm)
k∗
i GOES clearness parameter for pixel i

ki GOES clear sky factor for pixel i

σ Stefan-Boltzmann constant = 4.903e−9 (MJ/m2K4 day)
α Albedo, 0.23, for the modeled surface
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